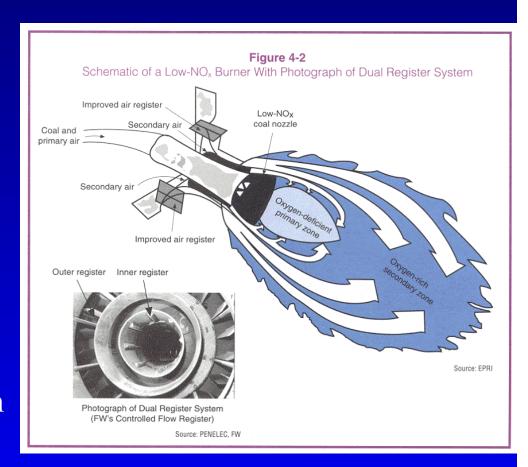
Electric Utility NOx Reduction Options

EPA SIP Innovations Conference March 13, 2003

Jerry L. Golden Tennessee Valley Authority

Current Requirements


- All utility boilers subject to Title IV
 - Limits vary by boiler type from 0.40 to 0.86 lbs/MMBtu
 - Averaging of common ownership units allowed
- Ozone SIP call
 - Limits based on 0.15 lbs/MMBtu with state specific growth factor
 - Cap and trade system allows unit specific response to vary from overcontrol to no control
- Boiler specific limits
 - Non-attainment SIPS
 - NSPS
 - BACT

Options for Additional Reductions

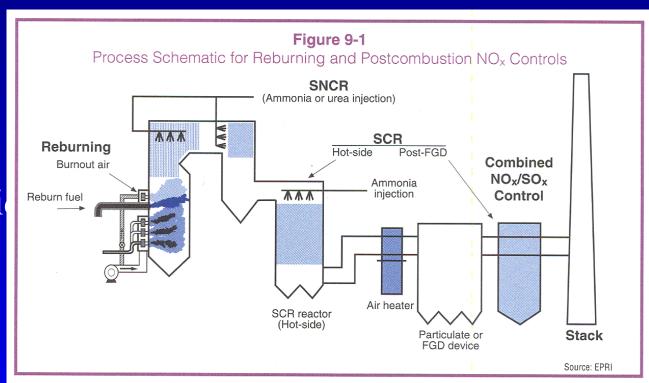
- Virtually all utility boilers now have some level of NOx control
- Many (over 150) of the largest utility boilers will be equipped with highest level NOx control technology (Selective Catalytic Reduction)
- Current options
 - Combustion modifications
 - Post combustion control equipment

Combustion Modifications

- CombustionModifications
 - CombustionOptimization
 - Burner ComponentModifications
 - Overfire Air
 - Low NOx Burners
 - Fuel Lean Gas Reburn
 - Gas Reburn

Recent Results from Combustion Modifications

Unit	Coal	OFA System	NOx (lb/MBtu)	Emissions Reference
Ameren Rush Island 2	PRB	LNCFS III	0.100	3Q 2002 CEMS
AEP Pirkey 1	Low S Texas Lignite	ABT	0.170	3Q 2002 CEMS
Duke Energy Marshall 4	Low S Eastern Bit	CCOFA/SO FA + LOFIR	0.255	3Q 2002 CEMS
Dynegy Vermilion 2	Med S Illinois	NEI/ICL	0.3052	2Q 2001 CEMS


Post Combustion Control Options

- May be used in combination with combustion modifications
- Commercial
 - Selective Catalytic Reduction (SCR)
 - Non-selective Catalytic Reduction (SNCR)
- Near Commercial
 - Selective Autocatalytic Reduction (NOxStar)
 - ECO-tube
- Developmental
 - Many multi-pollutant; not expected to be available in time for 8-hr ozone SIPs.

SNCR Technologies

- Conventional SNCR
- SNCR Trim
- AEFLGRTM
- RotaMixTM
- SNCR Hybric Approaches

SNCR Technologies Summary

- SNCR processes tend to be site specific applications
 - Range of NOx reduction performance and cost effectiveness
- Increased application in utility industry seen as cost of NOx allowances increase
 - SNCR technologies typically achieve between
 25% 40% NOx reductions
 - Cost effectiveness range between \$1,000 -\$4,000 per ton NOx removed

SNCR Technologies Performance & Cost

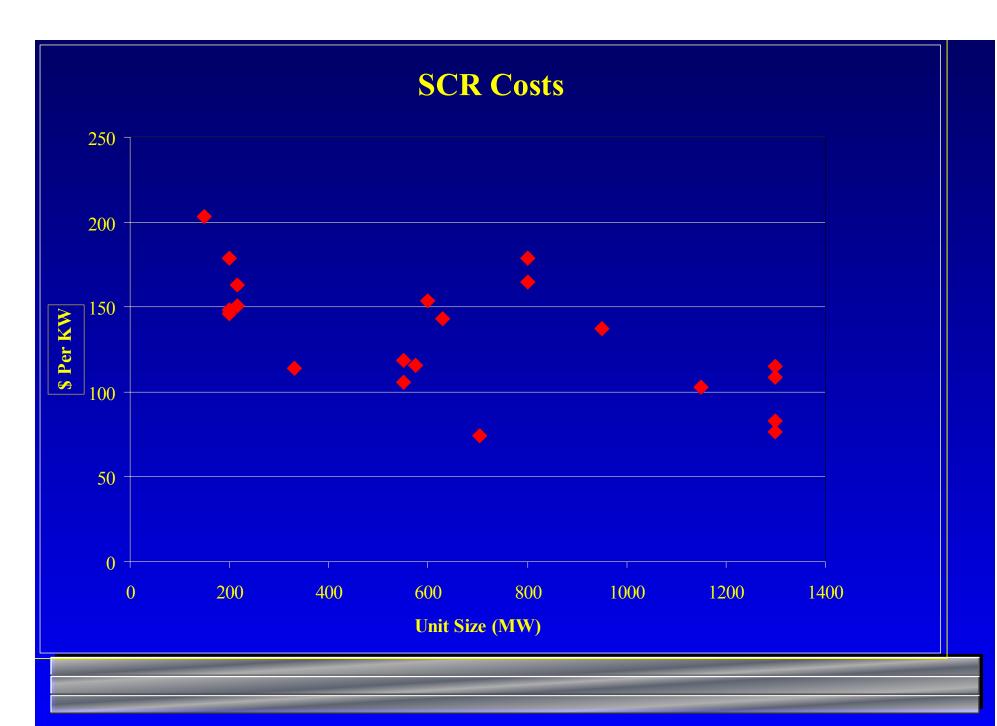
Technology	ΔNO_x	NH ₃ Slip (ppmv)	Capital Cost (\$/kW)	Cost Effectiveness (\$/ton)
SNCR Trim	25% - 35%	5 – 12	4 – 8	\$1,000 - \$2,500
SNCR	28% - 50%	5 – 12	10 - 20	\$1,000 – \$2,500
RRI	30% - 35% cyclone boilers	< 1 ppm	4 - 8	\$2,500 – \$3,000
AEFLGR TM	10% - 15%	5 – 12 ppm	10 – 20	\$3,000 – \$4,000
Hybrid	50% - 85%	< 2 ppm (with catalyst)	> 30 dependent upon configuration	Site Specific > \$3,000

Factors Influencing SCR Performance

Catalyst Quantity

Flue Gas Temperature

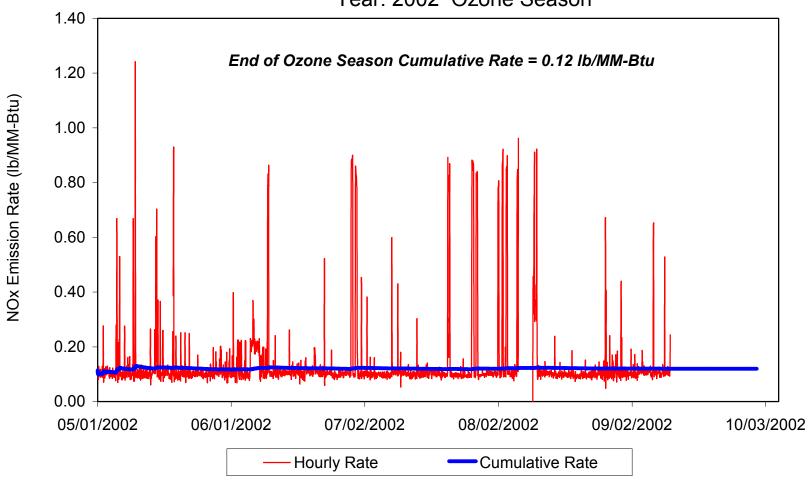
Stratification of NOx,
 Velocity, Temperature

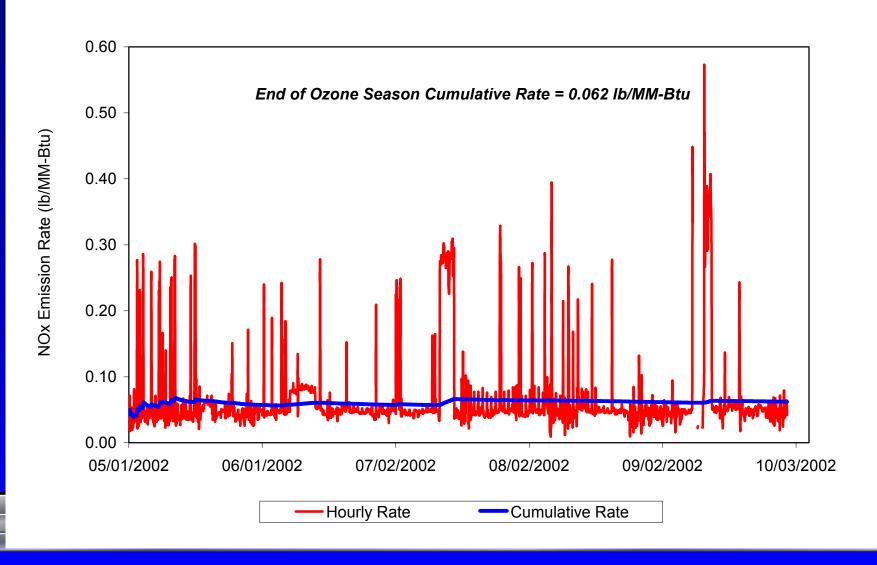

Ammonia Distribution

Fuel Trace Species

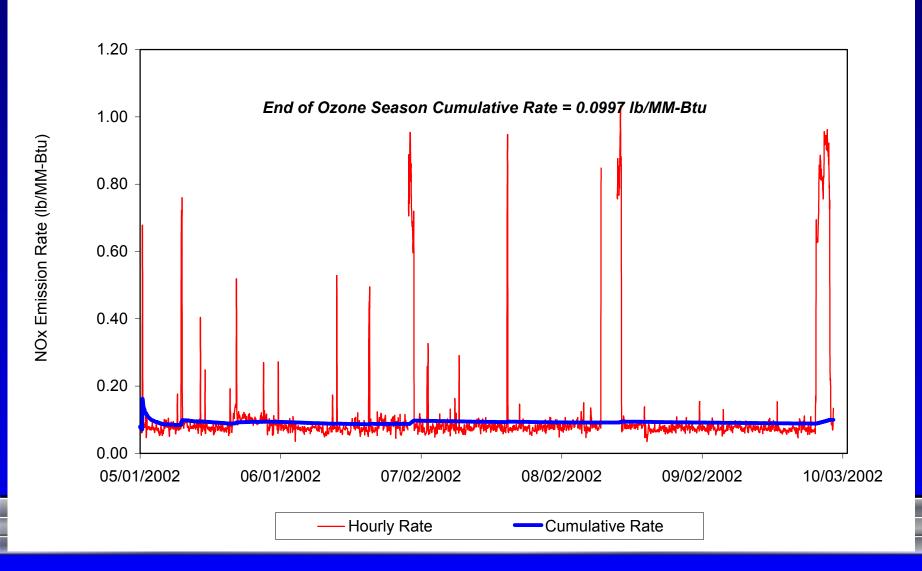
- SO₂/SO₃ Conversions

Catalyst Poisoning (As,P)

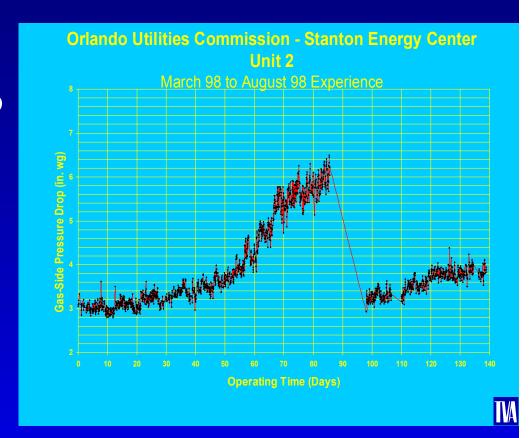



SCR Operating Results – 31 units during 2002 ozone season

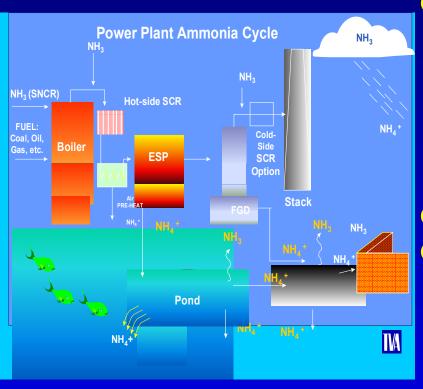
- Only *two-thirds* of the 31 units maintained NOx rates which averaged below 0.15 lb/MM-Btu for the entire ozone season.
- Only *one-third* of the 31 units maintained NOx rates which averaged at or below 0.10 lb/MM-Btu for the entire ozone season.
- The *two "best"* operating SCR units appear to have achieved 2002 ozone season average NO_x emission rates of 0.062 lb/MM-Btu.
- N o units could have complied with a 24-hour rolling average of 0.15 lb/MM-Btu


Plant Name: MERRIMACK STATION Unit: 1 Year: 2002 Ozone Season

Plant Name: HL SPURLOCK Unit: 2 Year: 2002 Ozone Season



Plant Name: PARADISE Unit: 2 Year: 2002 Ozone Season



SCR Operational Issues

- Ammonia Slip
- Conversion of SO2 to SO3
 - Air Heater Fouling
 - Ash Contamination
 - Back-End Corrosion
 - Plume Visibility
- Increased SystemPressure Drop(4 6 i.w.c.)

Other SCR Issues

- Environmental impacts
 - Water toxicity
 - Nitrogen enrichment of waters
 - Visible emissions increase (SO3)
- Manpower availability
- Construction lead times
 - 18-36 months
 - Dependent on site complexity
- Unit outage requirements

Near Commercial Technologies

- Targeting intermediate removal level niches
 - -50 to 75%
- NOxStar process demonstrated at TVA Kingston 9
 - Mechanical issues require resolution
- ECO Tube
 - Demonstrated on small units in Europe

Summary

- Low cost utility NOx reductions have been taken
- Advances in combustion modifications will allow small additional reductions
- Post combustion controls on units not controlled through SIP call will be more expensive
- Averaging time for NOx SIP limits should consider operational histories